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Abstract—The merits of an indirect protecting method for hydroxyl groups using allyl groups via allyloxycarbonyl groups in the
synthesis of antennary b-DD-mannopyranosyl disaccharides from b-DD-galactopyranosyl disaccharides were studied. Regioselective
allyloxycarbonylation and conversion reactions involving simultaneous double SN2 nucleophilic substitution at C-2 0 and C-4 0 of
benzyl O-[b-DD-galactopyranosyl]-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalimido-b-DD-glucopyranoside were examined for compari-
son with the direct allylation method. The required b-DD-mannopyranosyl disaccharide having proper protecting groups was
obtained using this indirect method in 52% yield. In contrast, the reported direct allylation method using methyl O-(b-DD-galactopy-
ranosyl) disaccharide gave the corresponding b-DD-mannopyranosyl disaccharide in only 7.5% yield.
� 2004 Elsevier Ltd. All rights reserved.
The practical synthesis of antennary b-DD-mannopyranosyl
oligosaccharides is an important subject in bioactive
oligosaccharide synthesis. The difficulties of the neces-
sary 1,2-cis coupling are well known. To date, several
papers1 on the direct construction of the b-DD-manno
structure have been reported, but obtaining the proper
protecting groups at the required positions of the
intermediate compounds has proven to be a difficult
problem. Several indirect methods involving SN2 nucleo-
philic substitution aimed at synthesizing a suitably pro-
tected antennary b-DD-mannopyranosyl unit have shown
promise. David et al. has reported2 a mode of building
the very important b-mannopyranosyl residue by inver-
sion of C-2, thereby bypassing the difficult step. Further-
more, Alais and David have also developed3 a method
for preparing disaccharides containing b-DD-mannopy-
ranosyl groups starting from N-phthaloyllactosamine
derivatives by two simultaneous SN2 substitutions. The
authors were inspired by the work of David on con-
structing b-DD-mannopyranosyl residues and have devel-
oped a practical method based on that work.4

In oligosaccharide syntheses, it is an important chal-
lenge to protect the individual hydroxyl group regiose-
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lectively. In this case, the regioselectivities and the
yields are usually affected by the reaction conditions
and the kind of protecting groups used. In the syntheses
of antennary b-DD-mannopyranosyl oligosaccharide
units, the b-DD-galactopyranosyl residue appears to be a
better substrate than b-DD-glucopyranosyl due to the abil-
ity to regioselectively protect the branching positions at
3 and 6 followed by SN2 substitutions at the 4 and then
the 2-positions (from galacto to gluco and then manno
derivatives).4 In previous work, Sato et al. have exam-
ined the effect of protecting groups at the 3- and 6-posi-
tions of b-DD-galactosides on these double SN2
substitution reactions using benzyl 3,6-di-O-acyl-
or 3,6-di-O-allyl- and -O-benzyl-2,4-bis(O-trifluoro-
methansulfonyl)-b-DD-galactopyranoside with CsOAc
and found that 3,6-di-O-acyl derivatives give better
yields than 3,6-di-O-allyl- or -benzyl derivatives.5 In
contrast, it has been reported that the regioselective pro-
tection of the 3- and 6-positions of the b-DD-galactopy-
ranosyl disaccharide, methyl 3,6-di-O-benzyl-2-deoxy-
4-O-b-DD-galactopyranosyl-2-phthalimido-b-DD-glucopyr-
anoside (5) with allyl groups using bis(tributyltin) oxide
give the expected 3 0,6 0-di-O-allyl derivative (6) in only
16% yield despite otherwise typically good results for
regioselective protection using the tin oxide method.6

This decreased nucleophilicity has been reported3 to be
a property of disaccharides, especially toward organotin
reagents. Considering the above results, we wanted to
develop a new methodology that would overcome the
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difficulties of synthesizing b-DD-mannopyranosyl disac-
charide units. We wanted to develop an indirect method
involving as the key step, the transformation of allyloxy-
carbonyl protecting groups to allyl groups (Scheme 1).7

In this paper, we describe the merits of this in-
direct method for synthesizing b-mannohexopyranosyl
disaccharides, using the synthesis of benzyl O-[3,6-di-
O-allyl-b-DD-mannopyranosyl]-(1-4)-3,6-di-O-benzyl-2-
deoxy-2-N-phthalimido-b-DD-glucopyranoside (10) via
benzyl O-[3,6-di-O-allyloxycarbonyl-b-DD-galactopyrano-
syl]-(1-4)-3,6-di-O-benzyl-2-deoxy-2-N-phthalimido-
DD-glucopyranoside (7) as an example.

The starting material, benzyl O-[2,3,4,6-tetra-O-acetyl-
b-DD-galactopyranosyl]-(1-4)-3,6-di-O-benzyl-2-deoxy-2-
N-phthalimido-b-DD-glucopyranoside (3) was prepared
by the method described by Alais and David.3 Coupling
of benzyl 3,6-di-O-benzyl-2-deoxy-2-N-phthalimido-b-
DD-glucopyranoside (2)8 with 1,2,3,4,6-penta-O-acetyl-b-
DD-galactpyranose (1) in the presence of trimethylsilyl
triflate as the promoter9 gave the protected lactosamine
derivative 3 [mp 194–202 �C; ½a�25D +18 (c 1.0, CHCl3)] in
72% yield. This was de-O-acetylated by alkaline met-
hanolysis to give disaccharide 4 in quantitative yield,
which has an unprotected b-DD-galactopyranosyl group.
The reaction of 4 and bis(tributyltin)oxide (1.5equiv)
in toluene under reflux conditions by using a Dean Stark
apparatus with molecular sieves (MS 4A) for 3h gave
the corresponding (tributyltin)oxide derivative. This
reaction mixture was treated with allyloxycarbonyl chlo-
ride (3.0equiv) at room temperature until the disappear-
ance of the starting material (for 24h) gave the
corresponding 3 0,6 0-di-O-allyloxycarbonyl derivative 7
[syrup; ½a�25D +37 (c 0.9, CHCl3)] in 84% yield. It was
purified on a column of silica gel (hexane/ethyl ace-
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Scheme 1. A reported conversion method of allyloxycarbonyl groups into a
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Scheme 2. Reagents and conditions: (a) TMSOTf/CH2Cl2, �25�C to rt (72%)

AllOCOCl/toluene, rt (84%); (d) Tf2O/Py.–CH2Cl2, �19�C to rt (quant.);

benzene, �19�C to rt (72%).
tate = 2:1). The structure of 7 was determined by 1H
NMR10 (down field shift of H-3 0, H-6 0a, and H-6 0b).
Compound 7 was then treated with 3.0equiv of Tf2O
in pyridine–CH2Cl2 (6:1) at �19 �C then room tempera-
ture under argon to give syrupy 2 0,4 0-bis(triflate) 8 quan-
titatively, the structure of which was determined by 1H
NMR10 (down field shift of H-2 0 and H-4 0). The labile
compound 8 was directly used for the following reaction
without purification (Scheme 2).

A simultaneous double SN2 substitution of 2 0,4 0-bis(tri-
flate) 8 with CsOAc (3.0equiv) and 18-crown-6
(3.0equiv) in toluene with ultrasonication4 in a water
bath was carried out until the disappearance of 8
(for 12h) gave the corresponding syrupy 2 0,4 0-di-O-ace-
tyl-b-DD-mannopyranosyl derivative 9 [½a�27D �11 (c 0.4,
CHCl3)] in 86% yield, which was purified on a column
of silica gel (hexane/ethyl acetate = 2/1). The structure
of 9 was determined by 1H NMR10 (8: J1 0,2 0 =
7.9Hz, J2 0,30 = 10.4Hz, J3 0,40 = 3.7Hz, J4 0,5 0 = 0Hz; 9:
J1 0,20 =0Hz, J2 0,3 0 = 3.7Hz, J3 0,4 0 = 9.7Hz, J4 0,5 0 = 9.7Hz).
In a similar reaction, 2 0,4 0-bis(trifrate) of methyl
3,6-di-O-benzyl-2-deoxy-4-O-(3,6-di-O-allyl-b-DD-galacto-
pyranosyl)-2-phthalimido-b-DD-glucopyranoside with
tetrabutylammonium benzoate has been reported3 to
give the corresponding 2 0,4 0-di-O-benzoyl mannopyran-
osyl disaccharide 11 in 47% yield. From the results, the
double SN2 substitution of these 2 0,4 0-bis(triflate) com-
pounds with cesium acylate appears to provide better
yields than that with the use of tetrabutylammonium
acylate. It is also possible to obtain a mono-substituted
b-DD-glucopyranosyl product if we want, because this
reactions proceeded firstly at C-4 0. These results
may promise the wide applications in the syntheses of
b-DD-mannopyranosyl as well as b-DD-glucopyranosyl
O
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disaccharides having a variety of functional groups at
C-2 0.4 Allyloxycarbonyl derivative 9 was then trans-
formed with (Ph3P)4Pd

7 into the corresponding allyl
ether derivative 10 in 72% yield. The structure of 10
was supported by 1H NMR10 (high field shift of H-3 0,
H-6 0a, and H-6 0b). Compound 10 may be useful for syn-
thesizing antennary mannopyranosyl oligosaccharides,
because it is possible to remove each protecting group
individually.

In summary, the combination of indirect allylation and
a double SN2 substitution of the 2 0,4 0-bis(triflate) deriva-
tive of b-DD-galactopyranosyl disaccharide using CsOAc
was shown to work well for the synthesis of b-DD-manno-
pyranosyl disaccharides, which form the core of anten-
nary b-DD-mannopyranosyl oligosaccharides. The ease
of reaction and the dramatically improved yields, should
make this a very useful method for performing this and
similar kinds of oligosaccharide syntheses.
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